The Pairwise Piecewise-Linear Embedding for Efficient Non-Linear Classification
نویسندگان
چکیده
Linear classifiers are much faster to learn and test than non-linear ones. On the other hand, non-linear kernels offer improved performance, albeit at the increased cost of training kernel classifiers. To use non-linear mappings with efficient linear learning algorithms, explicit embeddings that approximate popular kernels have recently been proposed. However, the embedding process is often costly and the results are usually less accurate than kernel methods. In this work we propose a non-linear feature map that is both very efficient, but at the same time highly expressive. The method is based on discretization and interpolation of individual features values and feature pairs. The discretization allows us to model different regions of the feature space separately, while the interpolation preserves the original continuous values. Using this embedding is strictly more general than a linear model and as efficient as the second-order polynomial explicit feature map. An extensive empirical evaluation shows that our method consistently outperforms other methods, including a wide range of kernels. This is in contrast to other proposed embeddings that were faster than kernel methods, but with lower accuracy.
منابع مشابه
Presentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملApproximate Solution of Sensitivity Matrix of Required Velocity Using Piecewise Linear Gravity Assumption
In this paper, an approximate solution of sensitivity matrix of required velocity with final velocity constraint is derived using a piecewise linear gravity assumption. The total flight time is also fixed for the problem. Simulation results show the accuracy of the method. Increasing the midway points for linearization, increases the accuracy of the solution, which this, in turn, depends on the...
متن کاملThe implications of piecewise linear process of normal accruals
The present study investigates whether the basic assumption in the Jones model, which normal accruals are a linear function of change in sales, is empirically valid. It also discusses and addresses the implications of the assumption violation in the earnings management detection tests. The research employs a sample of 2832 observations of the annual information of firms listed in Tehran Stock E...
متن کاملPlanelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملTesting the efficiency of two pairwise comparison methods in discrete multiple criteria problems
We test the efficiency of two pairwise comparison methods. The methods studied are Salminen’s piecewise linear prospect theory (PLP) method and the convex cone method by Korhonen, Wallenius, and Zionts (KWZ). The PLP method is based on a piecewise linear difference function. The KWZ method assumes a quasi-concave utility or value function. These methods are tested using randomly generated data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013